

    
      Navigation

      
        	
          index

        	
          next |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Djrill: Mandrill Transactional Email for Django

Version 2.1.0

Djrill integrates the Mandrill [http://mandrill.com] transactional
email service into Django.


PROJECT STATUS: INACTIVE

As of April, 2016, Djrill is no longer actively maintained (other
than security updates). It is likely to keep working unless/until
Mandrill changes their APIs, but Djrill will not be updated for
newer Django versions or Mandrill changes.
(more info [https://github.com/brack3t/Djrill/issues/111])

You may be interested in
django-anymail [https://github.com/anymail/django-anymail],
a Djrill fork that supports Mailgun, Postmark, SendGrid, and other
transactional ESPs (including limited support for Mandrill).




In general, Djrill “just works” with Django’s built-in django.core.mail [http://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail]
package. It includes:


	Support for HTML, attachments, extra headers, and other features of
Django’s built-in email [https://docs.djangoproject.com/en/stable/topics/email/]

	Mandrill-specific extensions like tags, metadata, tracking, and MailChimp templates

	Optional support for Mandrill inbound email and other webhook notifications,
via Django signals



Djrill is released under the BSD license. It is tested against Django 1.4–1.9
(including Python 3 with Django 1.6+, and PyPy support with Django 1.5+).
Djrill uses semantic versioning [http://semver.org/].


Documentation



	Djrill 1-2-3

	Installation
	Configuration

	Mandrill Webhooks (Optional)

	Other Optional Settings





	Upgrading from 1.x
	Dropped support for Django 1.3, Python 2.6, and Python 3.2

	Removed DjrillAdminSite

	Added exception for invalid or rejected recipients

	Other 2.0 breaking changes





	Sending Mail
	Django Email Support

	Mandrill-Specific Options

	Response from Mandrill

	Exceptions





	Sending Template Mail
	Mandrill Templates

	Django Templates





	Mixing Email Backends

	Mandrill Webhooks and Inbound Email
	Configuration

	Webhook Notifications





	Troubleshooting
	Figuring Out What’s Wrong

	Getting Help





	Contributing
	Bugs

	Pull Requests

	Testing





	Release Notes
	Djrill 2.x

	Djrill 1.x and Earlier












Thanks

Thanks to the MailChimp team for asking us to build this nifty little app, and to all of Djrill’s
contributors.
Oh, and, of course, Kenneth Reitz for the awesome requests [http://docs.python-requests.org] library.







          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Djrill 1-2-3


	Install Djrill from PyPI:

$ pip install djrill







	Edit your project’s settings.py:

INSTALLED_APPS = (
    ...
    "djrill"
)

MANDRILL_API_KEY = "<your Mandrill key>"
EMAIL_BACKEND = "djrill.mail.backends.djrill.DjrillBackend"
DEFAULT_FROM_EMAIL = "you@example.com"  # if you don't already have this in settings







	Now the regular Django email functions [https://docs.djangoproject.com/en/stable/topics/email/]
will send through Mandrill:

from django.core.mail import send_mail

send_mail("It works!", "This will get sent through Mandrill",
    "Djrill Sender <djrill@example.com>", ["to@example.com"])





You could send an HTML message, complete with custom Mandrill tags and metadata:

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives(
    subject="Djrill Message",
    body="This is the text email body",
    from_email="Djrill Sender <djrill@example.com>",
    to=["Recipient One <someone@example.com>", "another.person@example.com"],
    headers={'Reply-To': "Service <support@example.com>"} # optional extra headers
)
msg.attach_alternative("<p>This is the HTML email body</p>", "text/html")

# Optional Mandrill-specific extensions:
msg.tags = ["one tag", "two tag", "red tag", "blue tag"]
msg.metadata = {'user_id': "8675309"}

# Send it:
msg.send()













          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Installation

It’s easiest to install Djrill from PyPI [https://pypi.python.org/pypi/djrill]:


$ pip install djrill








If you decide to install Djrill some other way, you’ll also need to install its
one dependency (other than Django, of course): the requests [http://docs.python-requests.org]
library from Kenneth Reitz.


Configuration

In your project’s settings.py:


	Add djrill to your INSTALLED_APPS [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS]:

INSTALLED_APPS = (
    ...
    "djrill"
)







	Add the following line, substituting your own MANDRILL_API_KEY:

MANDRILL_API_KEY = "brack3t-is-awesome"







	Override your existing EMAIL_BACKEND [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND] with the following line:

EMAIL_BACKEND = "djrill.mail.backends.djrill.DjrillBackend"









Also, if you don’t already have a DEFAULT_FROM_EMAIL [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] in settings,
this is a good time to add one. (Django’s default is “webmaster@localhost”,
which won’t work with Mandrill.)




Mandrill Webhooks (Optional)

Djrill includes optional support for Mandrill webhooks, including inbound email.
See the Djrill webhooks section for configuration details.




Other Optional Settings

You can optionally add any of these Djrill settings to your settings.py.


MANDRILL_IGNORE_RECIPIENT_STATUS

Set to True to disable djrill.MandrillRecipientsRefused exceptions
on invalid or rejected recipients. (Default False.)


New in version 2.0.






MANDRILL_SETTINGS

You can supply global default options to apply to all messages sent through Djrill.
Set MANDRILL_SETTINGS to a dict of these options. Example:

MANDRILL_SETTINGS = {
    'subaccount': 'client-347',
    'tracking_domain': 'example.com',
    'track_opens': True,
}





See Mandrill-Specific Options for a list of available options. (Everything
except merge_vars, recipient_metadata, and send_at
can be used with MANDRILL_SETTINGS.)

Attributes set on individual EmailMessage objects will override the global
MANDRILL_SETTINGS for that message. global_merge_vars
on an EmailMessage will be merged with any global_merge_vars in
MANDRILL_SETTINGS (with the ones on the EmailMessage taking
precedence if there are conflicting var names).


New in version 2.0.






MANDRILL_API_URL

The base url for calling the Mandrill API. The default is
MANDRILL_API_URL = "https://mandrillapp.com/api/1.0",
which is the secure, production version of Mandrill’s 1.0 API.

(It’s unlikely you would need to change this.)




MANDRILL_SUBACCOUNT

Prior to Djrill 2.0, the MANDRILL_SUBACCOUNT setting could
be used to globally set the Mandrill subaccount.
Although this is still supported for compatibility with existing code,
new code should set a global subaccount in MANDRILL_SETTINGS
as shown above.









          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Upgrading from 1.x

Djrill 2.0 includes some breaking changes from 1.x.
These changes should have minimal (or no) impact on most Djrill users,
but if you are upgrading please review the major topics below
to see if they apply to you.

Djrill 1.4 tried to warn you if you were using Djrill features
expected to change in 2.0. If you are seeing any deprecation warnings
with Djrill 1.4, you should fix them before upgrading to 2.0.
(Warnings appear in the console when running Django in debug mode.)

Please see the release notes for a list of new features
and improvements in Djrill 2.0.


Dropped support for Django 1.3, Python 2.6, and Python 3.2

Although Djrill may still work with these older configurations,
we no longer test against them. Djrill now requires Django 1.4
or later and Python 2.7, 3.3, or 3.4.

If you require support for these earlier versions, you should
not upgrade to Djrill 2.0. Djrill 1.4 remains available on
pypi, and will continue to receive security fixes.




Removed DjrillAdminSite

Earlier versions of Djrill included a custom Django admin site.
The equivalent functionality is available in Mandrill’s dashboard,
and Djrill 2.0 drops support for it.

Although most Djrill users were unaware the admin site existed,
many did follow the earlier versions’ instructions to enable it.

If you have added DjrillAdminSite, you will need to remove it for Djrill 2.0.

In your urls.py:


from djrill import DjrillAdminSite  # REMOVE this
admin.site = DjrillAdminSite()  # REMOVE this

admin.autodiscover()  # REMOVE this if you added it only for Djrill








In your settings.py:


INSTALLED_APPS = (
    ...
    # If you added SimpleAdminConfig only for Djrill:
    'django.contrib.admin.apps.SimpleAdminConfig',  # REMOVE this
    'django.contrib.admin',  # ADD this default back
    ...
)








(These instructions assume you had changed to SimpleAdminConfig
solely for DjrillAdminSite. If you are using it for custom admin
sites with any other Django apps you use, you should leave it
SimpleAdminConfig in place, but still remove the references to
DjrillAdminSite.)




Added exception for invalid or rejected recipients

Djrill 2.0 raises a new djrill.MandrillRecipientsRefused exception when
all recipients of a message are invalid or rejected by Mandrill. (This parallels
the behavior of Django’s default SMTP email backend [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND],
which raises SMTPRecipientsRefused [http://docs.python.org/2.7/library/smtplib.html#smtplib.SMTPRecipientsRefused] when
all recipients are refused.)

Your email-sending code should handle this exception (along with other
exceptions that could occur during a send). However, if you want to retain the
Djrill 1.x behavior and treat invalid or rejected recipients as successful sends,
you can set MANDRILL_IGNORE_RECIPIENT_STATUS to True in your settings.py.




Other 2.0 breaking changes

Code that will be affected by these changes is far less common than
for the changes listed above, but they may impact some uses:


	Removed unintended date-to-string conversion

	If your code was inadvertently relying on Djrill to automatically
convert date or datetime values to strings in merge_vars,
metadata, or other Mandrill message attributes, you must
now explicitly do the string conversion yourself.
See Formatting Merge Data for an explanation.
(Djrill 1.4 reported a DeprecationWarning for this case.)

(This does not affect send_at, where Djrill specifically
allows date or datetime values.)



	Removed DjrillMessage class

	The DjrillMessage class has not been needed since Djrill 0.2.
You should replace any uses of it with the standard
EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] class.
(Djrill 1.4 reported a DeprecationWarning for this case.)

	Removed DjrillBackendHTTPError

	This exception was deprecated in Djrill 0.3. Replace uses of it
with djrill.MandrillAPIError.
(Djrill 1.4 reported a DeprecationWarning for this case.)

	Refactored Djrill backend and exceptions

	Several internal details of djrill.mail.backends.DjrillBackend
and Djrill’s exception classes have been significantly updated for 2.0.
The intent is to make it easier to maintain and extend the backend
(including creating your own subclasses to override Djrill’s default
behavior). As a result, though, any existing code that depended on
undocumented Djrill internals may need to be updated.









          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Sending Mail

Djrill handles all outgoing email sent through Django’s standard
django.core.mail [http://docs.djangoproject.com/en/stable/topics/email/#module-django.core.mail] package, including send_mail() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail],
send_mass_mail() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail], the EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] class,
and even mail_admins() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.mail_admins].

If you’d like to selectively send only some messages through Mandrill,
there is a way to use multiple email backends.


Django Email Support

Djrill supports most of the functionality of Django’s EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
and EmailMultiAlternatives classes.

Some notes and limitations:


	Display Names

	All email addresses (from, to, cc, bcc) can be simple
(“email@example.com”) or can include a display name
(“Real Name <email@example.com>”).

	CC and BCC Recipients

	Djrill properly identifies “cc” and “bcc” recipients to Mandrill.

Note that you may need to set the Mandrill option preserve_recipients
to True if you want recipients to be able to see who else was included
in the “to” list.






	HTML/Alternative Parts

	To include an HTML version of a message, use
attach_alternative():

from django.core.mail import EmailMultiAlternatives

msg = EmailMultiAlternatives("Subject", "text body",
                             "from@example.com", ["to@example.com"])
msg.attach_alternative("<html>html body</html>", "text/html")





Djrill allows a maximum of one
attach_alternative()
on a message, and it must be mimetype="text/html".
Otherwise, Djrill will raise NotSupportedByMandrillError when you
attempt to send the message. (Mandrill doesn’t support sending multiple html
alternative parts, or any non-html alternatives.)






	Attachments

	Djrill will send a message’s attachments. (Note that Mandrill may impose limits
on size and type of attachments.)

Also, if an image attachment has a Content-ID header, Djrill will tell Mandrill
to treat that as an embedded image rather than an ordinary attachment.
(For an example, see test_embedded_images()
in tests/test_mandrill_send.py.)






	Headers

	Djrill accepts additional headers and passes them along to Mandrill:

msg = EmailMessage( ...
    headers={'Reply-To': "reply@example.com", 'List-Unsubscribe': "..."}
)






Note

Djrill also supports the reply_to param added to
EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] in Django 1.8.
(If you provide both a ‘Reply-To’ header and the reply_to param,
the header will take precedence.)










Mandrill-Specific Options

Most of the options from the Mandrill
messages/send API [https://mandrillapp.com/api/docs/messages.html#method=send]
message struct can be set directly on an EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
(or subclass) object.


Note

You can set global defaults for common options with the
MANDRILL_SETTINGS setting, to avoid having to
set them on every message.




	
important

	Boolean: whether Mandrill should send this message ahead of non-important ones.






	
track_opens

	Boolean: whether Mandrill should enable open-tracking for this message.
Default from your Mandrill account settings.

message.track_opens = True










	
track_clicks

	Boolean: whether Mandrill should enable click-tracking for this message.
Default from your Mandrill account settings.


Note

Mandrill has an option to track clicks in HTML email but not plaintext, but
it’s only available in your Mandrill account settings. If you want to use that
option, set it at Mandrill, and don’t set the track_clicks attribute here.








	
auto_text

	Boolean: whether Mandrill should automatically generate a text body from the HTML.
Default from your Mandrill account settings.






	
auto_html

	Boolean: whether Mandrill should automatically generate an HTML body from the plaintext.
Default from your Mandrill account settings.






	
inline_css

	Boolean: whether Mandrill should inline CSS styles in the HTML.
Default from your Mandrill account settings.






	
url_strip_qs

	Boolean: whether Mandrill should ignore any query parameters when aggregating
URL tracking data. Default from your Mandrill account settings.






	
preserve_recipients

	Boolean: whether Mandrill should include all recipients in the “to” message header.
Default from your Mandrill account settings.






	
view_content_link

	Boolean: set False on sensitive messages to instruct Mandrill not to log the content.






	
tracking_domain

	str: domain Mandrill should use to rewrite tracked links and host tracking pixels
for this message. Useful if you send email from multiple domains.
Default from your Mandrill account settings.






	
signing_domain

	str: domain Mandrill should use for DKIM signing and SPF on this message.
Useful if you send email from multiple domains.
Default from your Mandrill account settings.






	
return_path_domain

	str: domain Mandrill should use for the message’s return-path.






	
merge_language

	str: the merge tag language if using merge tags – e.g., “mailchimp” or “handlebars”.
Default from your Mandrill account settings.






	
global_merge_vars

	dict: merge variables to use for all recipients (most useful with Mandrill Templates).

message.global_merge_vars = {'company': "ACME", 'offer': "10% off"}





Merge data must be strings or other JSON-serializable types.
(See Formatting Merge Data for details.)






	
merge_vars

	dict: per-recipient merge variables (most useful with Mandrill Templates). The keys
in the dict are the recipient email addresses, and the values are dicts of merge vars for
each recipient:

message.merge_vars = {
    'wiley@example.com': {'offer': "15% off anvils"},
    'rr@example.com':    {'offer': "instant tunnel paint"}
}





Merge data must be strings or other JSON-serializable types.
(See Formatting Merge Data for details.)






	
tags

	list of str: tags to apply to the message, for filtering reports in the Mandrill
dashboard. (Note that Mandrill prohibits tags longer than 50 characters or starting with
underscores.)

message.tags = ["Order Confirmation", "Test Variant A"]










	
subaccount

	str: the ID of one of your subaccounts to use for sending this message.






	
google_analytics_domains

	list of str: domain names for links where Mandrill should add Google Analytics
tracking parameters.

message.google_analytics_domains = ["example.com"]










	
google_analytics_campaign

	str or list of str: the utm_campaign tracking parameter to attach to links
when adding Google Analytics tracking. (Mandrill defaults to the message’s from_email as
the campaign name.)






	
metadata

	dict: metadata values Mandrill should store with the message for later search and
retrieval.

message.metadata = {'customer': customer.id, 'order': order.reference_number}





Mandrill restricts metadata keys to alphanumeric characters and underscore, and
metadata values to numbers, strings, boolean values, and None (null).






	
recipient_metadata

	dict: per-recipient metadata values. Keys are the recipient email addresses,
and values are dicts of metadata for each recipient (similar to
merge_vars)

Mandrill restricts metadata keys to alphanumeric characters and underscore, and
metadata values to numbers, strings, boolean values, and None (null).






	
async

	Boolean: whether Mandrill should use an async mode optimized for bulk sending.






	
ip_pool

	str: name of one of your Mandrill dedicated IP pools to use for sending this message.






	
send_at

	datetime [http://docs.python.org/2.7/library/datetime.html#module-datetime] or date or str: instructs Mandrill to delay sending this message
until the specified time. Example:

msg.send_at = datetime.utcnow() + timedelta(hours=1)





Mandrill requires a UTC string in the form YYYY-MM-DD HH:MM:SS.
Djrill will convert python dates and datetimes to this form.
(Dates will be given a time of 00:00:00.)


Note

Timezones

Mandrill assumes send_at is in the UTC timezone,
which is likely not the same as your local time.

Djrill will convert timezone-aware datetimes to UTC for you.
But if you format your own string, supply a date, or a
naive datetime, you must make sure it is in UTC.
See the python datetime [http://docs.python.org/2.7/library/datetime.html#module-datetime] docs for more information.

For example, msg.send_at = datetime.now() + timedelta(hours=1)
will try to schedule the message for an hour from the current time,
but interpreted in the UTC timezone (which isn’t what you want).
If you’re more than an hour west of the prime meridian, that will
be in the past (and the message will get sent immediately). If
you’re east of there, the message might get sent quite a bit later
than you intended. One solution is to use utcnow as shown in
the earlier example.




Note

Scheduled sending is a paid Mandrill feature. If you are using
a free Mandrill account, send_at won’t work.







All the Mandrill-specific attributes listed above work with any
EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]-derived object, so you can use them with
many other apps that add Django mail functionality.

If you have questions about the python syntax for any of these properties,
see DjrillMandrillFeatureTests in tests/test_mandrill_send.py for examples.




Response from Mandrill


	
mandrill_response

	



Djrill adds a mandrill_response attribute to each EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage]
as it sends it. This allows you to retrieve message ids, initial status information and more.

For an EmailMessage that is successfully sent to one or more email addresses, mandrill_response will
be set to a list of dict, where each entry has info for one email address. See the Mandrill docs for the
messages/send API [https://mandrillapp.com/api/docs/messages.html#method=send] for full details.

For example, to get the Mandrill message id for a sent email you might do this:

msg = EmailMultiAlternatives(subject="subject", body="body",
                             from_email="sender@example.com",to=["someone@example.com"])
msg.send()
response = msg.mandrill_response[0]
mandrill_id = response['_id']





For this example, msg.mandrill_response might look like this:

msg.mandrill_response = [
    {
        "email": "someone@example.com",
        "status": "sent",
        "_id": "abc123abc123abc123abc123abc123"
    }
]





If an error is returned by Mandrill while sending the message then mandrill_response will be set to None.




Exceptions


	
exception djrill.NotSupportedByMandrillError

	If the email tries to use features that aren’t supported by Mandrill, the send
call will raise a NotSupportedByMandrillError exception (a subclass
of ValueError).






	
exception djrill.MandrillRecipientsRefused

	If all recipients (to, cc, bcc) of a message are invalid or rejected by Mandrill
(e.g., because they are your Mandrill blacklist), the send call will raise a
MandrillRecipientsRefused exception.
You can examine the message’s mandrill_response attribute
to determine the cause of the error.

If a single message is sent to multiple recipients, and any recipient is valid
(or the message is queued by Mandrill because of rate limiting or send_at), then
this exception will not be raised. You can still examine the mandrill_response
property after the send to determine the status of each recipient.

You can disable this exception by setting MANDRILL_IGNORE_RECIPIENT_STATUS
to True in your settings.py, which will cause Djrill to treat any non-API-error response
from Mandrill as a successful send.


New in version 2.0: Djrill 1.x behaved as if MANDRILL_IGNORE_RECIPIENT_STATUS = True.








	
exception djrill.MandrillAPIError

	If the Mandrill API fails or returns an error response, the send call will
raise a MandrillAPIError exception (a subclass of requests.HTTPError [http://docs.python-requests.org/en/latest/api/#requests.HTTPError]).
The exception’s status_code and response attributes may
help explain what went wrong. (Tip: you can also check Mandrill’s
API error log [https://mandrillapp.com/settings/api] to view the full API
request and error response.)






	
exception djrill.NotSerializableForMandrillError

	The send call will raise a NotSerializableForMandrillError exception
if the message has attached data which cannot be serialized to JSON for the Mandrill API.

See Formatting Merge Data for more information.


New in version 2.0: Djrill 1.x raised a generic TypeError in this case.
NotSerializableForMandrillError is a subclass of TypeError
for compatibility with existing code.













          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Sending Template Mail


Mandrill Templates

To use a Mandrill (MailChimp) template stored in your Mandrill account,
set a template_name and (optionally) template_content
on your EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] object:

from django.core.mail import EmailMessage

msg = EmailMessage(subject="Shipped!", from_email="store@example.com",
                   to=["customer@example.com", "accounting@example.com"])
msg.template_name = "SHIPPING_NOTICE"           # A Mandrill template name
msg.template_content = {                        # Content blocks to fill in
    'TRACKING_BLOCK': "<a href='.../*|TRACKINGNO|*'>track it</a>"
}
msg.global_merge_vars = {                       # Merge tags in your template
    'ORDERNO': "12345", 'TRACKINGNO': "1Z987"
}
msg.merge_vars = {                              # Per-recipient merge tags
    'accounting@example.com': {'NAME': "Pat"},
    'customer@example.com':   {'NAME': "Kim"}
}
msg.send()





If template_name is set, Djrill will use Mandrill’s
messages/send-template API [https://mandrillapp.com/api/docs/messages.html#method=send-template],
and will ignore any body text set on the EmailMessage.

All of Djrill’s other Mandrill-specific options
can be used with templates.


Formatting Merge Data

If you’re using dates, datetimes, Decimals, or anything other than strings and integers,
you’ll need to format them into strings for use as merge data:

product = Product.objects.get(123)  # A Django model
total_cost = Decimal('19.99')
ship_date = date(2015, 11, 18)

# Won't work -- you'll get "not JSON serializable" exceptions:
msg.global_merge_vars = {
    'PRODUCT': product,
    'TOTAL_COST': total_cost,
    'SHIP_DATE': ship_date
}

# Do something this instead:
msg.global_merge_vars = {
    'PRODUCT': product.name,  # assuming name is a CharField
    'TOTAL_COST': "%.2f" % total_cost,
    'SHIP_DATE': ship_date.strftime('%B %d, %Y')  # US-style "March 15, 2015"
}





These are just examples. You’ll need to determine the best way to format
your merge data as strings.

Although floats are allowed in merge vars, you’ll generally want to format them
into strings yourself to avoid surprises with floating-point precision.

Technically, Djrill will accept anything serializable by the Python json package –
which means advanced template users can include dicts and lists as merge vars
(for templates designed to handle objects and arrays).
See the Python json.JSONEncoder [http://docs.python.org/2.7/library/json.html#json.JSONEncoder] docs for a list of allowable types.

Djrill will raise djrill.NotSerializableForMandrillError if you attempt
to send a message with non-json-serializable data.




How To Use Default Mandrill Subject and From fields

To use default Mandrill “subject” or “from” field from your template definition
(overriding your EmailMessage and Django defaults), set the following attrs:
use_template_subject and/or use_template_from on
your EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] object:

msg.use_template_subject = True
msg.use_template_from = True
msg.send()






	
use_template_subject

	If True [http://docs.python.org/2.7/library/constants.html#True], Djrill will omit the subject, and Mandrill will
use the default subject from the template.






	
use_template_from

	If True [http://docs.python.org/2.7/library/constants.html#True], Djrill will omit the “from” field, and Mandrill will
use the default “from” from the template.










Django Templates

To compose email using Django templates, you can use Django’s
render_to_string()
template shortcut to build the body and html.

Example that builds an email from the templates message_subject.txt,
message_body.txt and message_body.html:

from django.core.mail import EmailMultiAlternatives
from django.template import Context
from django.template.loader import render_to_string

template_data = {
    'ORDERNO': "12345", 'TRACKINGNO': "1Z987"
}

plaintext_context = Context(autoescape=False)  # HTML escaping not appropriate in plaintext
subject = render_to_string("message_subject.txt", template_data, plaintext_context)
text_body = render_to_string("message_body.txt", template_data, plaintext_context)
html_body = render_to_string("message_body.html", template_data)

msg = EmailMultiAlternatives(subject=subject, from_email="store@example.com",
                             to=["customer@example.com"], body=text_body)
msg.attach_alternative(html_body, "text/html")
msg.send()











          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Mixing Email Backends

Since you are replacing Django’s global EMAIL_BACKEND [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND], by default
Djrill will handle all outgoing mail, sending everything through Mandrill.

You can use Django mail’s optional connection [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.get_connection]
argument to send some mail through Mandrill and others through a different system.

This could be useful, for example, to deliver customer emails with Mandrill,
but send admin emails directly through an SMTP server:

from django.core.mail import send_mail, get_connection

# send_mail connection defaults to the settings EMAIL_BACKEND, which
# we've set to DjrillBackend. This will be sent using Mandrill:
send_mail("Thanks", "We sent your order", "sales@example.com", ["customer@example.com"])

# Get a connection to an SMTP backend, and send using that instead:
smtp_backend = get_connection('django.core.mail.backends.smtp.EmailBackend')
send_mail("Uh-Oh", "Need your attention", "admin@example.com", ["alert@example.com"],
    connection=smtp_backend)





You can supply a different connection to Django’s
send_mail() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mail] and send_mass_mail() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail] helpers,
and in the constructor for an
EmailMessage [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.EmailMessage] or EmailMultiAlternatives.

(See the django.utils.log.AdminEmailHandler [https://docs.djangoproject.com/en/stable/topics/logging/#django.utils.log.AdminEmailHandler] docs for more information on Django’s admin error logging.)





          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Mandrill Webhooks and Inbound Email

Mandrill webhooks [http://help.mandrill.com/entries/21738186-Introduction-to-Webhooks] are used for notification about outbound messages
(bounces, clicks, etc.), and also for delivering inbound email
processed through Mandrill.

Djrill includes optional support for Mandrill’s webhook notifications.
If enabled, it will send a Django signal for each event in a webhook.
Your code can connect to this signal for further processing.


Warning

Webhook Security

Webhooks are ordinary urls—they’re wide open to the internet.
You must take steps to secure webhooks, or anyone could submit
random (or malicious) data to your app simply by invoking your
webhook URL. For security:


	Your webhook should only be accessible over SSL (https).
(This is beyond the scope of Djrill.)

	Your webhook must include a random, secret key, known only to your
app and Mandrill. Djrill will verify calls to your webhook, and will
reject calls without the correct key.

	You can, optionally include the two settings DJRILL_WEBHOOK_SIGNATURE_KEY
and DJRILL_WEBHOOK_URL to enforce webhook signature [http://help.mandrill.com/entries/23704122-Authenticating-webhook-requests] checking






Configuration

To enable Djrill webhook processing you need to create and set a webhook
secret in your project settings, include the Djrill url routing, and
then add the webhook in the Mandrill control panel.


	In your project’s settings.py, add a DJRILL_WEBHOOK_SECRET:

DJRILL_WEBHOOK_SECRET = "<create your own random secret>"





substituting a secret you’ve generated just for Mandrill webhooks.
(Do not use your Mandrill API key or Django SECRET_KEY for this!)

An easy way to generate a random secret is to run the command below in a shell:

$ python -c "from django.utils import crypto; print crypto.get_random_string(16)"







	In your base urls.py, add routing for the Djrill urls:

urlpatterns = patterns('',
    ...
    url(r'^djrill/', include(djrill.urls)),
)







	Now you need to tell Mandrill about your webhook:


	For receiving events on sent messages (e.g., bounces or clickthroughs),
you’ll do this in Mandrill’s webhooks control panel [https://mandrillapp.com/settings/webhooks].

	For setting up inbound email through Mandrill, you’ll add your webhook
to Mandrill’s inbound settings [https://mandrillapp.com/inbound] under “Routes” for your domain.

	And if you want both, you’ll need to add the webhook in both places.



In all cases, the “Post to URL” is
https://yoursite.example.com/djrill/webhook/?secret=your-secret
substituting your app’s own domain, and changing your-secret to the secret
you created in step 1.

(For sent-message webhooks, don’t forget to tick the “Trigger on Events”
checkboxes for the events you want to receive.)





Once you’ve completed these steps and your Django app is live on your site,
you can use the Mandrill “Test” commands to verify your webhook configuration.
Then see the next section for setting up Django signal handlers to process
the webhooks.

Incidentally, you have some control over the webhook url.
If you’d like to change the “djrill” prefix, that comes from
the url config in step 2. And if you’d like to change
the name of the “secret” query string parameter, you can set
DJRILL_WEBHOOK_SECRET_NAME in your settings.py.

For extra security, Mandrill provides a signature in the request header
X-Mandrill-Signature. If you want to verify this signature, you need to provide
the settings DJRILL_WEBHOOK_SIGNATURE_KEY with the webhook-specific
signature key that can be found in the Mandrill admin panel and
DJRILL_WEBHOOK_URL where you should enter the exact URL, including
that you entered in Mandrill when creating the webhook.




Webhook Notifications

Once you’ve enabled webhooks, Djrill will send a djrill.signals.webhook_event
custom Django signal [https://docs.djangoproject.com/en/stable/topics/signals/] for each Mandrill event it receives.
You can connect your own receiver function to this signal for further processing.

Be sure to read Django’s listening to signals [https://docs.djangoproject.com/en/stable/topics/signals/#listening-to-signals] docs for information on defining
and connecting signal receivers.

Examples:

from djrill.signals import webhook_event
from django.dispatch import receiver

@receiver(webhook_event)
def handle_bounce(sender, event_type, data, **kwargs):
    if event_type == 'hard_bounce' or event_type == 'soft_bounce':
        print "Message to %s bounced: %s" % (
            data['msg']['email'],
            data['msg']['bounce_description']
        )

@receiver(webhook_event)
def handle_inbound(sender, event_type, data, **kwargs):
    if event_type == 'inbound':
        print "Inbound message from %s: %s" % (
            data['msg']['from_email'],
            data['msg']['subject']
        )

@receiver(webhook_event)
def handle_whitelist_sync(sender, event_type, data, **kwargs):
    if event_type == 'whitelist_add' or event_type == 'whitelist_remove':
        print "Rejection whitelist update: %s email %s (%s)" % (
            data['action'],
            data['reject']['email'],
            data['reject']['reason']
        )





Note that your webhook_event signal handlers will be called for all Mandrill
webhook callbacks, so you should always check the event_type param as shown
in the examples above to ensure you’re processing the expected events.

Mandrill batches up multiple events into a single webhook call.
Djrill will invoke your signal handler once for each event in the batch.

The available fields in the data param are described in Mandrill’s documentation:
sent-message webhooks [http://help.mandrill.com/entries/21738186-Introduction-to-Webhooks], inbound webhooks [http://help.mandrill.com/entries/22092308-What-is-the-format-of-inbound-email-webhooks-], and whitelist/blacklist sync webooks [https://mandrill.zendesk.com/hc/en-us/articles/205583297-Sync-Event-Webhook-format].







          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Troubleshooting

Djrill throwing errors? Not sending what you want? Here are some tips...


Figuring Out What’s Wrong


	Check the error message: Look for a Mandrill error message in your
web browser or console (running Django in dev mode) or in your server
error logs. As of v1.4, Djrill reports the detailed Mandrill error when
something goes wrong. And when the error is something like “invalid API key”
or “invalid email address”, that’s probably 90% of what you’ll need to know
to solve the problem.

	Check the Mandrill API logs: The Mandrill dashboard includes an
incredibly-helpful list of your recent API calls [https://mandrillapp.com/settings/api] – and you can click
into each one to see the full request and response. Check to see if the
data you thought you were sending actually made it into the request, and
if Mandrill has any complaints in the response.

	Double-check common issues:
	Did you set your MANDRILL_API_KEY in settings.py?

	Did you add 'djrill' to the list of INSTALLED_APPS [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-INSTALLED_APPS] in settings.py?

	Are you using a valid from address? Django’s default is “webmaster@localhost”,
which won’t cut it. Either specify the from_email explicitly on every message
you send through Djrill, or add DEFAULT_FROM_EMAIL [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-DEFAULT_FROM_EMAIL] to your settings.py.





	Try it without Djrill: Try switching your EMAIL_BACKEND [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_BACKEND]
setting to Django’s File backend [https://docs.djangoproject.com/en/stable/topics/email/#file-backend] and then running your email-sending
code again. If that causes errors, you’ll know the issue is somewhere
other than Djrill. And you can look through the EMAIL_FILE_PATH [http://docs.djangoproject.com/en/stable/ref/settings/#std:setting-EMAIL_FILE_PATH]
file contents afterward to see if you’re generating the email you want.






Getting Help

If you’ve gone through the suggestions above and still aren’t sure what’s wrong,
the Djrill community is happy to help. Djrill is supported and maintained by the
people who use it – like you! (We’re not Mandrill employees.)

You can ask in either of these places (but please pick only one per question!):


	Ask on StackOverflow [http://stackoverflow.com/questions/tagged/django+mandrill]

	Tag your question with both Django and Mandrill to get our attention.
Bonus: a lot of questions about Djrill are actually questions about Django
itself, so by asking on StackOverflow you’ll also get the benefit of the
thousands of Django experts there.

	Open a GitHub issue [https://github.com/brack3t/Djrill/issues]

	We do our best to answer questions in GitHub issues. And if you’ve found
a Djrill bug, that’s definitely the place to report it. (Or even fix it –
see Contributing.)



Wherever you ask, it’s always helpful to include the relevant portions of your
code, the text of any error messages, and any exception stack traces in your
question.







          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Contributing

Djrill is maintained by its users. Your contributions are encouraged!

The Djrill source code [https://github.com/brack3t/Djrill] is on github. See AUTHORS.txt [https://github.com/brack3t/Djrill/blob/master/AUTHORS.txt] for a list
of some of the people who have helped improve Djrill.


Bugs

You can report problems or request features in
Djrill’s github issue tracker [https://github.com/brack3t/Djrill/issues].

We also have some Troubleshooting information that may be helpful.




Pull Requests

Pull requests are always welcome to fix bugs and improve support for Mandrill and Django features.


	Please include test cases.

	We try to follow the Django coding style [https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/] (basically, PEP 8 with longer lines OK).

	By submitting a pull request, you’re agreeing to release your changes under under
the same BSD license as the rest of this project.






Testing

Djrill is tested on Travis [https://travis-ci.org/brack3t/Djrill] against several
combinations of Django and Python versions. (Full list in
.travis.yml [https://github.com/brack3t/Djrill/blob/master/.travis.yml].)

Most of the included tests verify that Djrill constructs the expected Mandrill API
calls, without actually calling Mandrill or sending any email. So these tests
don’t require a Mandrill API key, but they do require
mock [http://www.voidspace.org.uk/python/mock/index.html]
and six [https://pythonhosted.org/six/] (pip install mock six).

To run the tests, either:

python -Wall setup.py test





or:

python -Wall runtests.py





If you set the environment variable MANDRILL_TEST_API_KEY to a valid Mandrill
test API key [https://mandrill.zendesk.com/hc/en-us/articles/205582447#test_key], there are also a handful of integration tests which will run against
the live Mandrill API. (Otherwise these live API tests are skipped.)







          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            
  
Release Notes

Djrill practices semantic versioning.
Among other things, this means that minor updates
(1.x to 1.y) should always be backwards-compatible,
and breaking changes will always increment the
major version number (1.x to 2.0).


Djrill 2.x

Version 2.1:


	Handle Mandrill rejection whitelist/blacklist sync event webhooks

	This is likely the final release of Djrill (other than
any critical security updates). See GitHub for more on the
future of Djrill [https://github.com/brack3t/Djrill/issues/111].



Version 2.0:


	Breaking Changes: please see the upgrade guide.

	Add Django 1.9 support; drop Django 1.3, Python 2.6, and Python 3.2 support

	Add global MANDRILL_SETTINGS dict that can provide defaults
for most Djrill message options

	Add djrill.NotSerializableForMandrillError

	Use a single HTTP connection to the Mandrill API to improve performance
when sending multiple messages at once using send_mass_mail() [http://docs.djangoproject.com/en/stable/topics/email/#django.core.mail.send_mass_mail].
(You can also directly manage your own long-lived Djrill connection across multiple sends,
by calling open and close on Django’s email backend [http://docs.djangoproject.com/en/stable/topics/email/#topic-email-backends].)

	Add Djrill version to user-agent header when calling Mandrill API

	Improve diagnostics in exceptions from Djrill

	Remove DjrillAdminSite

	Remove unintended date-to-string conversion in JSON encoding

	Remove obsolete DjrillMessage class and DjrillBackendHTTPError

	Refactor Djrill backend and exceptions






Djrill 1.x and Earlier

Version 1.4:


	Django 1.8 support

	Support new Django 1.8 EmailMessage reply_to param.
(Specifying a Reply-To header
still works, with any version of Django,
and will override the reply_to param if you use both.)

	Include Mandrill error response in str(MandrillAPIError),
to make errors easier to understand.

	More-helpful exception when using a non-JSON-serializable
type in merge_vars and other Djrill message attributes

	Deprecation warnings for upcoming 2.0 changes (see above)



Version 1.3:


	Use Mandrill secure https API endpoint (rather than http).

	Support merge_language option (for choosing between
Handlebars and Mailchimp templates).



Version 1.2:


	Support Django 1.7; add testing on Python 3.3, 3.4, and PyPy

	Bug fixes



Version 1.1:


	Allow use of Mandrill template default “from” and “subject” fields,
via use_template_from and use_template_subject.

	Fix UnicodeEncodeError with unicode attachments



Version 1.0:


	Global MANDRILL_SUBACCOUNT setting



Version 0.9:


	Better handling for “cc” and “bcc” recipients.

	Allow all extra message headers in send.
(Mandrill has relaxed previous API restrictions on headers.)



Version 0.8:


	Expose Response from Mandrill on sent messages



Version 0.7:


	Support for Mandrill send options async, important,
ip_pool, return_path_domain, send_at,
subaccount, and view_content_link



Version 0.6:


	Support for signed webhooks



Version 0.5:


	Support for incoming mail and other Mandrill webhooks

	Support for Mandrill send options auto_html, tracking_domain
and signing_domain.



Version 0.4:


	Attachments with a Content-ID are now treated as
embedded images

	New Mandrill inline_css option is supported

	Remove limitations on attachment types, to track Mandrill change

	Documentation is now available on
djrill.readthedocs.org [https://djrill.readthedocs.org]



Version 0.3:


	Attachments are now supported

	Mandrill templates are now supported

	A bcc address is now passed to Mandrill as bcc, rather than being lumped in
with the “to” recipients. Multiple bcc recipients will now raise an exception,
as Mandrill only allows one.

	Python 3 support (with Django 1.5)

	Exceptions should be more useful:
djrill.NotSupportedByMandrillError replaces generic ValueError;
djrill.MandrillAPIError replaces DjrillBackendHTTPError, and is now
derived from requests.HTTPError.
(New exceptions are backwards compatible with old ones for existing code.)



Version 0.2:


	MANDRILL_API_URL is no longer required in settings.py

	Earlier versions of Djrill required use of a DjrillMessage class to
specify Mandrill-specific options. This is no longer needed – Mandrill
options can now be set directly on a Django EmailMessage object or any
subclass. (Existing code can continue to use DjrillMessage.)









          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Djrill 2.1.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | D
 | G
 | I
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 


A


  	
      
  	async
  


      
  	auto_html
  


  

  	
      
  	auto_text
  


  





D


  	
      
  	djrill.MandrillAPIError
  


      
  	djrill.MandrillRecipientsRefused
  


  

  	
      
  	djrill.NotSerializableForMandrillError
  


      
  	djrill.NotSupportedByMandrillError
  


  





G


  	
      
  	global_merge_vars
  


      
  	google_analytics_campaign
  


  

  	
      
  	google_analytics_domains
  


  





I


  	
      
  	important
  


      
  	inline_css
  


  

  	
      
  	ip_pool
  


  





M


  	
      
  	
    MANDRILL_API_KEY
  


      	
        
  	setting
  


      


      
  	
    MANDRILL_API_URL
  


      	
        
  	setting
  


      


      
  	
    MANDRILL_IGNORE_RECIPIENT_STATUS
  


      	
        
  	setting
  


      


      
  	mandrill_response
  


      
  	
    MANDRILL_SETTINGS
  


      	
        
  	setting
  


      


  

  	
      
  	
    MANDRILL_SUBACCOUNT
  


      	
        
  	setting
  


      


      
  	merge_language
  


      
  	merge_vars
  


      
  	metadata
  


  





P


  	
      
  	preserve_recipients
  


  





R


  	
      
  	recipient_metadata
  


  

  	
      
  	return_path_domain
  


  





S


  	
      
  	send_at
  


      
  	
    setting
  


      	
        
  	MANDRILL_API_KEY
  


        
  	MANDRILL_API_URL
  


        
  	MANDRILL_IGNORE_RECIPIENT_STATUS
  


        
  	MANDRILL_SETTINGS
  


        
  	MANDRILL_SUBACCOUNT
  


      


  

  	
      
  	signing_domain
  


      
  	subaccount
  


  





T


  	
      
  	tags
  


      
  	track_clicks
  


  

  	
      
  	track_opens
  


      
  	tracking_domain
  


  





U


  	
      
  	url_strip_qs
  


      
  	use_template_from
  


  

  	
      
  	use_template_subject
  


  





V


  	
      
  	view_content_link
  


  







          

      

      

    


    
         Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  _static/minus.png





_static/comment-close.png





_static/up.png





_static/file.png





_static/plus.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up-pressed.png





search.html


    
      Navigation


      
        		
          index


        		Djrill 2.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Djrill contributors (see AUTHORS.txt).
      Created using Sphinx 1.3.5.
    

  

_static/comment.png





_static/down.png





